3.1.7 \(\int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx\) [7]

3.1.7.1 Optimal result
3.1.7.2 Mathematica [A] (verified)
3.1.7.3 Rubi [A] (verified)
3.1.7.4 Maple [A] (verified)
3.1.7.5 Fricas [A] (verification not implemented)
3.1.7.6 Sympy [F]
3.1.7.7 Maxima [C] (verification not implemented)
3.1.7.8 Giac [C] (verification not implemented)
3.1.7.9 Mupad [F(-1)]

3.1.7.1 Optimal result

Integrand size = 15, antiderivative size = 89 \[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=-\frac {a d \cos (c+d x)}{2 x}+b d \cos (c) \operatorname {CosIntegral}(d x)-\frac {1}{2} a d^2 \operatorname {CosIntegral}(d x) \sin (c)-\frac {a \sin (c+d x)}{2 x^2}-\frac {b \sin (c+d x)}{x}-\frac {1}{2} a d^2 \cos (c) \text {Si}(d x)-b d \sin (c) \text {Si}(d x) \]

output
b*d*Ci(d*x)*cos(c)-1/2*a*d*cos(d*x+c)/x-1/2*a*d^2*cos(c)*Si(d*x)-1/2*a*d^2 
*Ci(d*x)*sin(c)-b*d*Si(d*x)*sin(c)-1/2*a*sin(d*x+c)/x^2-b*sin(d*x+c)/x
 
3.1.7.2 Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 76, normalized size of antiderivative = 0.85 \[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=-\frac {a d x \cos (c+d x)+d x^2 \operatorname {CosIntegral}(d x) (-2 b \cos (c)+a d \sin (c))+a \sin (c+d x)+2 b x \sin (c+d x)+d x^2 (a d \cos (c)+2 b \sin (c)) \text {Si}(d x)}{2 x^2} \]

input
Integrate[((a + b*x)*Sin[c + d*x])/x^3,x]
 
output
-1/2*(a*d*x*Cos[c + d*x] + d*x^2*CosIntegral[d*x]*(-2*b*Cos[c] + a*d*Sin[c 
]) + a*Sin[c + d*x] + 2*b*x*Sin[c + d*x] + d*x^2*(a*d*Cos[c] + 2*b*Sin[c]) 
*SinIntegral[d*x])/x^2
 
3.1.7.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 89, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx\)

\(\Big \downarrow \) 7293

\(\displaystyle \int \left (\frac {a \sin (c+d x)}{x^3}+\frac {b \sin (c+d x)}{x^2}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {1}{2} a d^2 \sin (c) \operatorname {CosIntegral}(d x)-\frac {1}{2} a d^2 \cos (c) \text {Si}(d x)-\frac {a \sin (c+d x)}{2 x^2}-\frac {a d \cos (c+d x)}{2 x}+b d \cos (c) \operatorname {CosIntegral}(d x)-b d \sin (c) \text {Si}(d x)-\frac {b \sin (c+d x)}{x}\)

input
Int[((a + b*x)*Sin[c + d*x])/x^3,x]
 
output
-1/2*(a*d*Cos[c + d*x])/x + b*d*Cos[c]*CosIntegral[d*x] - (a*d^2*CosIntegr 
al[d*x]*Sin[c])/2 - (a*Sin[c + d*x])/(2*x^2) - (b*Sin[c + d*x])/x - (a*d^2 
*Cos[c]*SinIntegral[d*x])/2 - b*d*Sin[c]*SinIntegral[d*x]
 

3.1.7.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.1.7.4 Maple [A] (verified)

Time = 0.16 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.99

method result size
derivativedivides \(d^{2} \left (a \left (-\frac {\sin \left (d x +c \right )}{2 d^{2} x^{2}}-\frac {\cos \left (d x +c \right )}{2 d x}-\frac {\operatorname {Si}\left (d x \right ) \cos \left (c \right )}{2}-\frac {\operatorname {Ci}\left (d x \right ) \sin \left (c \right )}{2}\right )+\frac {b \left (-\frac {\sin \left (d x +c \right )}{d x}-\operatorname {Si}\left (d x \right ) \sin \left (c \right )+\operatorname {Ci}\left (d x \right ) \cos \left (c \right )\right )}{d}\right )\) \(88\)
default \(d^{2} \left (a \left (-\frac {\sin \left (d x +c \right )}{2 d^{2} x^{2}}-\frac {\cos \left (d x +c \right )}{2 d x}-\frac {\operatorname {Si}\left (d x \right ) \cos \left (c \right )}{2}-\frac {\operatorname {Ci}\left (d x \right ) \sin \left (c \right )}{2}\right )+\frac {b \left (-\frac {\sin \left (d x +c \right )}{d x}-\operatorname {Si}\left (d x \right ) \sin \left (c \right )+\operatorname {Ci}\left (d x \right ) \cos \left (c \right )\right )}{d}\right )\) \(88\)
risch \(-\frac {\operatorname {Ei}_{1}\left (-i d x \right ) \cos \left (c \right ) b d}{2}-\frac {\cos \left (c \right ) \operatorname {Ei}_{1}\left (i d x \right ) b d}{2}-\frac {i \operatorname {Ei}_{1}\left (-i d x \right ) \cos \left (c \right ) a \,d^{2}}{4}+\frac {i \cos \left (c \right ) \operatorname {Ei}_{1}\left (i d x \right ) a \,d^{2}}{4}-\frac {i \operatorname {Ei}_{1}\left (-i d x \right ) \sin \left (c \right ) b d}{2}+\frac {i \sin \left (c \right ) \operatorname {Ei}_{1}\left (i d x \right ) b d}{2}+\frac {\operatorname {Ei}_{1}\left (-i d x \right ) \sin \left (c \right ) a \,d^{2}}{4}+\frac {\sin \left (c \right ) \operatorname {Ei}_{1}\left (i d x \right ) a \,d^{2}}{4}-\frac {a d \cos \left (d x +c \right )}{2 x}+\frac {\left (-4 d^{3} x^{3} b -2 a \,d^{3} x^{2}\right ) \sin \left (d x +c \right )}{4 d^{3} x^{4}}\) \(164\)
meijerg \(\frac {d^{2} b \sqrt {\pi }\, \sin \left (c \right ) \left (-\frac {4 d^{2} \cos \left (x \sqrt {d^{2}}\right )}{x \left (d^{2}\right )^{\frac {3}{2}} \sqrt {\pi }}-\frac {4 \,\operatorname {Si}\left (x \sqrt {d^{2}}\right )}{\sqrt {\pi }}\right )}{4 \sqrt {d^{2}}}+\frac {d b \sqrt {\pi }\, \cos \left (c \right ) \left (\frac {4 \gamma -4+4 \ln \left (x \right )+4 \ln \left (d \right )}{\sqrt {\pi }}+\frac {4}{\sqrt {\pi }}-\frac {4 \gamma }{\sqrt {\pi }}-\frac {4 \ln \left (2\right )}{\sqrt {\pi }}-\frac {4 \ln \left (\frac {d x}{2}\right )}{\sqrt {\pi }}-\frac {4 \sin \left (d x \right )}{\sqrt {\pi }\, d x}+\frac {4 \,\operatorname {Ci}\left (d x \right )}{\sqrt {\pi }}\right )}{4}+\frac {a \sqrt {\pi }\, \sin \left (c \right ) d^{2} \left (-\frac {4}{\sqrt {\pi }\, x^{2} d^{2}}-\frac {2 \left (2 \gamma -3+2 \ln \left (x \right )+\ln \left (d^{2}\right )\right )}{\sqrt {\pi }}+\frac {-6 d^{2} x^{2}+4}{\sqrt {\pi }\, x^{2} d^{2}}+\frac {4 \gamma }{\sqrt {\pi }}+\frac {4 \ln \left (2\right )}{\sqrt {\pi }}+\frac {4 \ln \left (\frac {d x}{2}\right )}{\sqrt {\pi }}-\frac {4 \cos \left (d x \right )}{\sqrt {\pi }\, d^{2} x^{2}}+\frac {4 \sin \left (d x \right )}{\sqrt {\pi }\, d x}-\frac {4 \,\operatorname {Ci}\left (d x \right )}{\sqrt {\pi }}\right )}{8}+\frac {a \sqrt {\pi }\, \cos \left (c \right ) d^{2} \left (-\frac {4 \cos \left (d x \right )}{d x \sqrt {\pi }}-\frac {4 \sin \left (d x \right )}{d^{2} x^{2} \sqrt {\pi }}-\frac {4 \,\operatorname {Si}\left (d x \right )}{\sqrt {\pi }}\right )}{8}\) \(311\)

input
int((b*x+a)*sin(d*x+c)/x^3,x,method=_RETURNVERBOSE)
 
output
d^2*(a*(-1/2*sin(d*x+c)/d^2/x^2-1/2*cos(d*x+c)/d/x-1/2*Si(d*x)*cos(c)-1/2* 
Ci(d*x)*sin(c))+1/d*b*(-sin(d*x+c)/d/x-Si(d*x)*sin(c)+Ci(d*x)*cos(c)))
 
3.1.7.5 Fricas [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.93 \[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=-\frac {a d x \cos \left (d x + c\right ) + {\left (a d^{2} x^{2} \operatorname {Si}\left (d x\right ) - 2 \, b d x^{2} \operatorname {Ci}\left (d x\right )\right )} \cos \left (c\right ) + {\left (2 \, b x + a\right )} \sin \left (d x + c\right ) + {\left (a d^{2} x^{2} \operatorname {Ci}\left (d x\right ) + 2 \, b d x^{2} \operatorname {Si}\left (d x\right )\right )} \sin \left (c\right )}{2 \, x^{2}} \]

input
integrate((b*x+a)*sin(d*x+c)/x^3,x, algorithm="fricas")
 
output
-1/2*(a*d*x*cos(d*x + c) + (a*d^2*x^2*sin_integral(d*x) - 2*b*d*x^2*cos_in 
tegral(d*x))*cos(c) + (2*b*x + a)*sin(d*x + c) + (a*d^2*x^2*cos_integral(d 
*x) + 2*b*d*x^2*sin_integral(d*x))*sin(c))/x^2
 
3.1.7.6 Sympy [F]

\[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=\int \frac {\left (a + b x\right ) \sin {\left (c + d x \right )}}{x^{3}}\, dx \]

input
integrate((b*x+a)*sin(d*x+c)/x**3,x)
 
output
Integral((a + b*x)*sin(c + d*x)/x**3, x)
 
3.1.7.7 Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.44 (sec) , antiderivative size = 112, normalized size of antiderivative = 1.26 \[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=-\frac {{\left ({\left (a {\left (-i \, \Gamma \left (-2, i \, d x\right ) + i \, \Gamma \left (-2, -i \, d x\right )\right )} \cos \left (c\right ) - a {\left (\Gamma \left (-2, i \, d x\right ) + \Gamma \left (-2, -i \, d x\right )\right )} \sin \left (c\right )\right )} d^{3} + 2 \, {\left (b {\left (\Gamma \left (-2, i \, d x\right ) + \Gamma \left (-2, -i \, d x\right )\right )} \cos \left (c\right ) - b {\left (i \, \Gamma \left (-2, i \, d x\right ) - i \, \Gamma \left (-2, -i \, d x\right )\right )} \sin \left (c\right )\right )} d^{2}\right )} x^{2} + 2 \, b \cos \left (d x + c\right )}{2 \, d x^{2}} \]

input
integrate((b*x+a)*sin(d*x+c)/x^3,x, algorithm="maxima")
 
output
-1/2*(((a*(-I*gamma(-2, I*d*x) + I*gamma(-2, -I*d*x))*cos(c) - a*(gamma(-2 
, I*d*x) + gamma(-2, -I*d*x))*sin(c))*d^3 + 2*(b*(gamma(-2, I*d*x) + gamma 
(-2, -I*d*x))*cos(c) - b*(I*gamma(-2, I*d*x) - I*gamma(-2, -I*d*x))*sin(c) 
)*d^2)*x^2 + 2*b*cos(d*x + c))/(d*x^2)
 
3.1.7.8 Giac [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.30 (sec) , antiderivative size = 796, normalized size of antiderivative = 8.94 \[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=\text {Too large to display} \]

input
integrate((b*x+a)*sin(d*x+c)/x^3,x, algorithm="giac")
 
output
1/4*(a*d^2*x^2*imag_part(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 
a*d^2*x^2*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 + 2*a* 
d^2*x^2*sin_integral(d*x)*tan(1/2*d*x)^2*tan(1/2*c)^2 - 2*a*d^2*x^2*real_p 
art(cos_integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 2*a*d^2*x^2*real_part(c 
os_integral(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 2*b*d*x^2*real_part(cos_int 
egral(d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - 2*b*d*x^2*real_part(cos_integral 
(-d*x))*tan(1/2*d*x)^2*tan(1/2*c)^2 - a*d^2*x^2*imag_part(cos_integral(d*x 
))*tan(1/2*d*x)^2 + a*d^2*x^2*imag_part(cos_integral(-d*x))*tan(1/2*d*x)^2 
 - 2*a*d^2*x^2*sin_integral(d*x)*tan(1/2*d*x)^2 - 4*b*d*x^2*imag_part(cos_ 
integral(d*x))*tan(1/2*d*x)^2*tan(1/2*c) + 4*b*d*x^2*imag_part(cos_integra 
l(-d*x))*tan(1/2*d*x)^2*tan(1/2*c) - 8*b*d*x^2*sin_integral(d*x)*tan(1/2*d 
*x)^2*tan(1/2*c) + a*d^2*x^2*imag_part(cos_integral(d*x))*tan(1/2*c)^2 - a 
*d^2*x^2*imag_part(cos_integral(-d*x))*tan(1/2*c)^2 + 2*a*d^2*x^2*sin_inte 
gral(d*x)*tan(1/2*c)^2 + 2*b*d*x^2*real_part(cos_integral(d*x))*tan(1/2*d* 
x)^2 + 2*b*d*x^2*real_part(cos_integral(-d*x))*tan(1/2*d*x)^2 - 2*a*d^2*x^ 
2*real_part(cos_integral(d*x))*tan(1/2*c) - 2*a*d^2*x^2*real_part(cos_inte 
gral(-d*x))*tan(1/2*c) - 2*b*d*x^2*real_part(cos_integral(d*x))*tan(1/2*c) 
^2 - 2*b*d*x^2*real_part(cos_integral(-d*x))*tan(1/2*c)^2 - 2*a*d*x*tan(1/ 
2*d*x)^2*tan(1/2*c)^2 - a*d^2*x^2*imag_part(cos_integral(d*x)) + a*d^2*x^2 
*imag_part(cos_integral(-d*x)) - 2*a*d^2*x^2*sin_integral(d*x) - 4*b*d*...
 
3.1.7.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b x) \sin (c+d x)}{x^3} \, dx=\int \frac {\sin \left (c+d\,x\right )\,\left (a+b\,x\right )}{x^3} \,d x \]

input
int((sin(c + d*x)*(a + b*x))/x^3,x)
 
output
int((sin(c + d*x)*(a + b*x))/x^3, x)